平成28年度

一般1期入学試験問題

数 学

(薬学部)

注 意 事 項

- 1. 問題用紙は、試験監督者の指示があるまで開いてはいけません。
- 2. 問題用紙と解答用紙(マークシート)は別になっています。
- 3. 解答用紙には解答欄以外に次の記入欄があるので、**監督者の指示に従って**、それ ぞれ正しく記入し、マークしなさい。
 - ① 氏名欄 氏名及びフリガナを記入しなさい。
 - ② **受験番号欄 受験番号**(数字及び英字)を記入し、さらにその下のマーク欄 にマークしなさい。
 - ③ 試験種別欄 一般 1 期にマークしなさい。
 - ④ 教科・科目欄 数学にマークしなさい。
- 4. **I** は必答, **II III IV** については、これらより**2問を選択**して解答しなさい。
- 5. 解答は、解答用紙の解答欄にマークしなさい。例えば、 10 と表示のある問いに対して③と解答する場合は、次の(例)のように**解答番号10の解答欄**の③にマークしなさい。

(例)	解答			Í	解		答		欄		
	番号	1	2	3	4	5	6	7	8	9	0
	10	1	2	•	4	(5)	6	7	8	9	0

6. 問題用紙は、試験終了後持ち帰りなさい。

以下の各問いに答えよ。

問1 定義域を $0 \le x \le 4$ とした二次関数 $f(x) = x^2 - 3x + 1$ がある。
(1) 関数 $f(x)$ は、 x が 1 のときに最小値 2 をとり、 x が 3 のと
きに最大値 4 をとる。
(2) a を定数とし、方程式 $f(x) = a$ が、ただ 1 つの実数解をもつような a の値の
範囲は 5 または 6 である。
とくに、 a が最小の整数であるとき、この条件を満たす x の値は $\boxed{7}$ であ
۵.

- 1 の選択肢

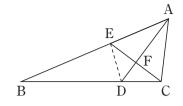
- 2 の選択肢

- 3 の選択肢

- (1) 1 (2) 2 (3) 3 (4) 4 (5) $\frac{1}{2}$ (6) $\frac{2}{3}$

- 4 の選択肢
- ① 3 ② 4 ③ 5 ④ 6 ⑤ 7

- 5 の選択肢


- 6 の選択肢
- ① $-\frac{3}{2} < a \le 5$ ② $-\frac{5}{4} < a \le 5$ ③ $0 < a \le 5$
- (4) $1 < a \le 5$ (5) $2 < a \le 5$
- (6) $3 < a \le 5$

- 7 の選択肢

- $3 \frac{3-\sqrt{13}}{2}$

- (4) $\frac{3+\sqrt{17}}{2}$ (5) $\frac{3-\sqrt{17}}{2}$
- (6) $\frac{3+\sqrt{23}}{2}$

問2 右の図で、△ABCは、∠BAC=60°、 AB=5、AC=2である。∠BACの二等分 線と辺BCの交点をD、Cから線分ADに引 いた垂線とAB、ADの交点をそれぞれE、F とする。

(1) 辺BCの長さは 8 , △ABCの面積は 9 であり、△ABCの外接 円の半径の長さは 10 である。
また、BDとDCの線分の長さの比が5: 2であるから、BDの長さは

また、BDとDCの線分の長さの比が 5 : 2 であるから、BDの長さは 11 である。

(2) 線分CEの長さは **12** であり、線分ADの長さは **13** である。 また、四角形AEDCの面積は **14** である。

- 8 の選択肢

- (1) $\sqrt{7}$ (2) $\sqrt{10}$ (3) $\sqrt{15}$ (4) $\sqrt{17}$ (5) $\sqrt{19}$ (6) $\sqrt{21}$

- 9 の選択肢

- 10 の選択肢

- 11 の選択肢
- ② $\frac{2\sqrt{17}}{5}$
- $\frac{3\sqrt{17}}{5}$

- $(4) \frac{2\sqrt{19}}{7}$
- $\underbrace{5} \frac{4\sqrt{19}}{7}$
- $6 \frac{5\sqrt{19}}{7}$

- 12 の選択肢

- (1) 1 (2) 2 (3) 3 (4) $\sqrt{2}$ (5) $\sqrt{3}$ (6) $\sqrt{5}$

- 13 の選択肢

(2) $\frac{3\sqrt{3}}{4}$

 $\frac{3}{5}$

- (4) $\frac{3\sqrt{3}}{5}$
- § $\frac{5\sqrt{3}}{7}$

 $\bigcirc 6 \frac{10\sqrt{3}}{7}$

- 14 の選択肢
- ② $\frac{2\sqrt{3}}{5}$
- $\frac{9\sqrt{3}}{5}$

 $4 \frac{12\sqrt{3}}{5}$

- (5) $\frac{10\sqrt{3}}{7}$
- (6) $\frac{20\sqrt{3}}{7}$

選択解答 Ⅲ ~**Ⅳ** の 3 問のうち、 2 問のみを 選んで解答すること。

II] 1	~	4の数が記	入された	4枚のカー	ドが箱 A,	В, С,	Dの各々	に合計16	対入っ
	てい	いる。	各々の箱が	らカード	を 1 枚ずつ	つ取り出す	とき,	以下の各	問いに答	えよ。

- **問1** カードの取り出し方は全部で **15** 通りある。 また、取り出したカードがすべて異なる数となるようなカードの取り出し方 は全部で **16** 通りある。
- **問2** 取り出したカードがすべて 3 以下である確率は **17** である。また、取り出したカードに偶数のカードが少なくとも 1 枚含まれる確率は **18** である。
- 問3 取り出したカードの数の最大値をXとする。

X=2である確率は 19 であり、X=3である確率は 20 である。 よって、Xの期待値は 21 である。

- 15 の選択肢
- ① 16 ② 32 ③ 64 ④ 128 ⑤ 256 ⑥ 512
 - 16 の選択肢
- 1 14 2 16 3 18 4 20 5 22 6 24
 - 17 の選択肢
- ① $\frac{27}{128}$ ② $\frac{45}{128}$ ③ $\frac{81}{128}$ ④ $\frac{27}{256}$ ⑤ $\frac{45}{256}$ ⑥ $\frac{81}{256}$
 - 18 の選択肢
- 19 の選択肢
- ① $\frac{1}{16}$ ② $\frac{1}{32}$ ③ $\frac{1}{128}$ ④ $\frac{15}{128}$ ⑤ $\frac{1}{256}$ ⑥ $\frac{15}{256}$
 - 20 の選択肢
- - 21 の選択肢

- 曲線 $C_1: y = x^2$ 上のx = 1における接線をlとする。l上のx座標が4である点をAとしたとき、以下の各問いに答えよ。
 - **問1** 接線lの方程式は **22** であり、曲線 C_1 、接線l、およびx軸で囲まれた部分の面積は **23** である。
 - 問2 点Aにおいて直線lと接する放物線を $C_2: y = x^2 + px + q$ とおく。 このとき、pの値は 24 、qの値は 25 であるから、 C_2 のグラフは、 C_1 のグラフをx軸方向に 26 、y軸方向に 27 だけ平行移動したグラ

曲線 C_2 , および直線lで囲まれた部分の面積は

フである。 また、 C_1 のグラフと C_2 のグラフの交点の座標は **28** であり、曲線 C_1 、

29 である。

- 22 の選択肢
- (1) y = 2x + 1 (2) y = 2x 1 (3) y = x + 1

- (4) y = x 2 (5) y = 3x + 1 (6) y = 3x + 2
 - 23 の選択肢
- ① $\frac{1}{3}$ ② $\frac{5}{6}$ ③ $\frac{1}{12}$ ④ $\frac{5}{12}$ ⑤ $\frac{1}{15}$ ⑥ $\frac{7}{15}$

- 24 の選択肢

- 25 の選択肢
- (1) -2 (2) 3 (3) 6 (4) 9 (5) 12 (6) 15

- 26 の選択肢
- (1) -5 (2) -3 (3) 3 (4) 5 (5) 7 (6) 9

- 27 の選択肢
- (1) -4 (2) -1 (3) 1 (4) 3 (5) 6 (6) 8

- 28 の選択肢

- (4) $\left(\frac{4}{3}, \frac{16}{9}\right)$ (5) $\left(\frac{5}{4}, \frac{25}{16}\right)$ (6) $\left(\frac{7}{4}, \frac{49}{16}\right)$
- 29 の選択肢

- **IV** 等差数列 $\{a_n\}$ は $a_3=5$, $a_{10}=26$ を満たしている。また、等比数列 $\{b_n\}$ は初項が 2 、公比が正で、 $b_1+b_2+b_3=14$ を満たしているとき、以下の各問いに答えよ。
 - 問 1 等差数列 $\{a_n\}$ の初項は 30 、公差は 31 なので、一般項は $a_n=$ 32 である。また、等比数列 $\{b_n\}$ の公比は 33 であり、一般 項は $b_n=$ 34 である。
 - 問2 数列 $\{a_n\}$ の初項から第n項までの和を S_n 数列 $\{b_n\}$ の初項から第n項までの和を S_n とすると、 $S_n = \boxed{35}$ 、 $S_n = \boxed{36}$ となる。

次ページにつづく

- 30 の選択肢
- (1) -3 (2) -1 (3) 1 (4) 2 (5) 3 (6) 4

- 31 の選択肢

- 32 の選択肢
- (1) 4n + 1
- (2) 3n-4 (3) 2n-1

- (4) n + 3
- (5) n + 8
- (6) 5 n 10

- 33 の選択肢
- (1) -4 (2) -2 (3) 2 (4) 3 (5) 4 (6) 5

- 34 の選択肢
- (1) $3 \cdot (-4)^{n-1}$
- (2) $3 \cdot (-2)^{n-1}$
- (3) 2^{n-1}

(4) 2^n

- (5) 2 · 3ⁿ⁻¹
- (6) 3 · 4ⁿ⁻¹

- 35 の選択肢
- (1) $\frac{5}{2} n^2 \frac{3}{2} n$ (2) $\frac{5}{2} n^2 + \frac{3}{2} n$ (3) $\frac{1}{2} n^2 \frac{5}{2} n$

- (4) $\frac{1}{2}n^2 + \frac{3}{2}n$ (5) $\frac{3}{2}n^2 \frac{5}{2}n$ (6) $\frac{3}{2}n^2 + \frac{1}{2}n$

- 36 の選択肢
- (1) $2^n 1$
- $(\widehat{2}) \quad 2^n 3 \qquad (\widehat{3}) \quad 2^{n+1} + 2$
- (4) $2^{n+1}-2$
- (5) 2 · 3ⁿ 1
- (6) 4 · 3ⁿ + 2

問3 数列 $\{a_nb_n\}$ について考える。

 $a_1b_1 = -2$, $a_2b_2 =$ 37 であり、 $\sum_{k=1}^n a_kb_k =$ 38 となる。 よって、数列 $\{a_nb_n\}$ の、第3項から第11項までの和は 39 である。 37 の選択肢

38 の選択肢

 $(1) (3n-7) 2^{n+1} + 14 (2) (3n-2) 2^{n} + 7 (3) (2n-1) 2^{n+1} + 1$

(4) $(2n+1)3^n+5$ (5) $(2n-3)3^{n+1}-1$ (6) $(2n+3)4^n+10$

39 の選択肢

(1) 15726 (2) 29352 (3) 46382 (4) 53252 (5) 83451 (6) 106504

