科目名	衛生系実習			ナンバリング	HYG463	授業形態	実習
対象学年	3 年	開講時期	後期	科目分類	必修	単位数	2 単位
代表教員	蝦名敬一	担当教員	櫻井映子〇、金 容必、石川 暁志、佐藤 陽、江藤 忠洋				

授業の概要		:、健康の維持、生活環境の保全に係わる食品衛生、環境衛生、微生物学分野の代表的な分析法を理解し、 薬剤師として身につけておくこと される基本的技能や問題解決能力を修得する。				
到達目標	でき、さら	操作および滅菌操作が実施できる。2. 真菌や細菌の形態観察をすることができる。3. 土壌資料からの放線菌の分離培養および純粋培養が にアガーストリック法により、抗生物質の生産を確認できる。4. 生物学的検定法を実施し、抗生物質の定量およびMIC測定ができる。5. 油脂 構・変質試験法、各種ビタミンの定性・定量法、主な食品添加物の試験法を実施できる。6. 主な上・下水試験項目、空気試験項目の測定が				
学習のアドバイス (勉強方法、履修に必要な 予備知識など)	実習では、「自らの手を動かす事」、「自ら出したデータを大切にし、きちんと記録して考察する事」に重点をおく。また、実習書、参考書や配布資料を十分に読みこなすこと。					
	【薬学部薬学科のディプローマポリシー】					
		1. 薬剤師の社会的義務を認識し、医療の担い手としてふさわしいヒューマニズムと倫理観を具現できる。				
	0	2. 医療分野における問題点を発見して解決するために、研究マインドと知識を統合・活用する力を有する。				
ディプローマポリシーとの		3. 患者本位の医療を実施するために、チーム医療における円滑なコミュニケーションをとることができる。				
関連	0	4. 地域の医療および保健に貢献するために、薬剤師としての実践的能力を有する。				
		5. 薬剤師として科学と医療の進展に対応するために、生涯にわたって持続可能な主体的学習ができる。				

標準的な到達レベル(合格ライン)の目安	理想的な到達レベルの目安
①実験器具を安全、適切に使用し、テキストに従った実験操作ができる。	①主な実験原理を説明できる。
②食品衛生、環境衛生、微生物学分野の代表的な分析法の実験原理を概説できる。	②グループメンバーに適切な助言ができる。
③実験結果の整理・解析ができ、決められた形式のレポートが書ける。	③実習で実施した実験操作の改善点を指摘できる。
④実験結果に対する自分なりの考察ができる。	④得られた実験結果に基づいて、引続く実験を考察できる。

成績評価観点 評価方法	知識・理解	思考·判断	関心·意欲	態度	技能·表現	その他	評価割合
定期試験(中間・期末試験)	0	0					20%
小テスト・授業内レポート							
宿題・授業外レポート	0	0					40%
授業態度・授業への参加			0	0	0		40%
出席				0	0		加点はしない。欠席は 減点となる。

課題、評価のフィードバック	毎回のレポートは添削・採点後、返却。

	回次	テーマ	授業内容	備考		
	第1回	無菌操作および滅菌(金、石川、江藤)	無菌操作および滅菌操作を実施し、バイオセーフティについて学 ぶ。	SBO:C8-(4)-6~7 SBO:C8-(3)-⑤-1,2, ア-C8-④-1		
	第2回		土壌資料からの放線菌の分離培養および純粋培養を実施し、さらに抗生物質の生産を確認するためアガーストリック法を学ぶ。	SBO:C8-(4)-7, C7-(2)-4 SBO:C8-(3)-⑥-3, C5-(2)-②-1,2		
	第3回	真菌の形態観察(金、石川、江藤)	真菌の形態観察をするためスライド培養法について学ぶ。	SBO:C8-(4)-7 SBO:C8-(3)-(4)-1,C8-(3)-(6)-3		
	第4回	油脂の変質試験(蝦名、櫻井、佐藤)	油脂の変質試験(ヨウ素価、TBA試験)を実施し、油脂の変敗機構を学ぶ。	SBO:C11-(1)-2-2 SBO:D1-(3)-(2)-2		
	第5回	ビタミンの定量(蝦名、櫻井、佐藤)	ビタミンB1, ビタミンB12の定量を実施し、その定量原理を学ぶ。	SBO:C11-(1)-1 SBO:D1-(3)-①-1		
	第6回	食品添加物の試験(蝦名、櫻井、佐藤)	主な食品添加物の試験法を実施し、食品添加物の使用理由を学ぶ。	SBO:C11-(1)-2-8 SBO:D1-(3)-②-5 ,ア-D1-①-2		
	第7回	上水試験法(蝦名、櫻井、佐藤)	硬度、残留塩素、塩素要求量の測定を実施し、飲料水の評価法に ついて学ぶ。	SBO:C12-(2)-2-4 SBO:D2-(2)-(3)-2,3		
授業計画	第8回	下水試験法(蝦名、櫻井、佐藤)	DO,BOD,CODの測定を実施し、環境評価について学ぶ。	SBO:C12-(2)-2-7 SBO:D2-(2)-(3)-5		
	第9回	大気汚染物質の測定(蝦名、櫻井、佐藤)	主な大気汚染物質の測定を実施し、大気環境評価について学ぶ。	SBO:C12-(2)-3-3 SBO:D2-(2)-4-2		
	第10回	室内空気試験(蝦名、櫻井、佐藤)	気温,気湿、カタ冷却力、気動、感覚温度、照度、騒音の測定し、室内環境評価ついて学ぶ。	SBO:C12-(2)-4-1 SBO:D2-(2)-(\$)-1		
	第11回	細菌の形態観察(金、石川、江藤)	細菌形態観察の一つ手段であるグラム染色について学ぶ。	SBO:C8-(4)-7 SBO:C8-(3)		
	第12回	生物学的検定法(金、石川、江藤)	抗生物質の定量およびMIC測定のために生物学的検定法について学ぶ。	SBO:C8-(4)-6 ~ 7 𝒯-C8-⑤-1,2		
	第13回					
	第14回					
	第15回					
	試験	第1回から第12回までの重要項目のまとめ(し				
授業の進め方		実習目的や実験原理、操作手順などの解説の後、グループ単位で教員の指示とテキストに従って実習を進める。時間を厳守すること。原則として、遅刻・途中退室は認めない。				
授業外学習の指	示	毎回、実験原理、実習内容を復習するともに実験結果の整理をする(レポート作成)(90分)。さらに、次回の実習課題についてテキストの該当箇所を熟読し、疑問点があれば調べておくこと(90分)。 (授業外学習時間: 毎週 分)				

教科書	衛生系実習書
参考書	1. 「スタンダード薬学シリーズ II -5 衛生薬学」日本薬学会編、東京化学同人、6,100 円、ISBN978-4-8079-1711-2 2. 化学療法学 -病原微生物・がんと闘う一田中晴雄、土屋友房監修、ISBN 978-4-524-40248-9
参考URLなど	なし
その他	[薬剤師として求められる基本的な資質⑤基礎的な科学カ ⑦(地域の保健・医療における実践的能力)地域の保健、医療、福祉、介護及び行政 等に参画・連携して、地域における人々の健康増進、公衆衛生の向上に貢献する能力を有する。アドバンスト: 25% 準備教育: 0% 大学独自: 0%

衛生系実習レポートのルーブリック評価

	評価規準	レベル高 ← 評価基準 → レベル低					
	項目/観点	例:模範的、レベル3	例:標準、合格、レベル2	例:要改善、不合格、レベル1			
1			キーワードが使用されているが、一部不適切 な記述が見られる。	記述がない。もしくは、適切にキーワードが 使用されず、意味不明な説明をしている。			
2			実験に使用する試薬、測定原理、手順、具体的な流れ等、ある程度説明している。	記述がない。もしくは、測定方法の提示、使 用試薬の羅列にとどまっている。			
3	実験結果と考察を適切に記述することができる。		実験結果と考察を記述しているが、考察の根拠が不十分である。	記述がない。もしくは、実験結果と考察が区 別されず、誤った説明をしている。			
4							
5							
6							
7							